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Abstract— We propose a framework of algorithms for source
seeking using stochastic optimization. We show that the in-
fotaxis algorithm which uses information theory for source
seeking can be realized using this framework. Using the
framework, we developed a novel algorithm called the expected
rate algorithm which has lower computational requirement. We
prove that both infotaxis and expected rate algorithms generate
identical optimization steps in most cases. Using simulation
we show that under certain conditions the proposed algorithm
generates more effective optimization steps than infotaxis and
verify the computational performance of the proposed algo-
rithm. We also demonstrate the practical applicability of the
algorithm in source seeking through experiments.

I. INTRODUCTION

Source seeking is typically described as a robot or a
group of robots carrying sensors for measurement of a field,
searching for the location of the source of the field. The field
generated by the source can either be smooth or turbulent. A
smooth field has a well defined gradient whereas the gradient
of a turbulent field is not well-defined.

In the case of a smooth scalar field, methods involving
gradient ascent/descent can be used to find the source lo-
cation [1]–[6]. But, the problem becomes harder when the
field is turbulent. Some algorithms have been proposed to
deal with turbulent fields (eg. [7], [8]) with an assumption
that measurement is available at all times but in a turbulent
field the measurement is available only in sporadic manner.
Infotaxis algorithm was proposed by Vergasolla et al. [9]
which uses information entropy (a measure of spatial con-
centration of probability distribution of source location) for
source localization. The infotaxis algorithm works reliably
[10] but requires significant computation power.

This paper introduces a theoretical framework so that
source seeking algorithms are formulated as iterative so-
lutions of stochastic optimization problems. By changing
the cost function used, one can derive various versions of
the algorithms for both smooth and turbulent fields. This
paper focuses on the case of turbulent fields and shows that
the infotaxis algorithm can be explained by the framework.
This paper also introduces an expected rate algorithm that
has less computational demand than the infotaxis algorithm.
The expected rate algorithm is analyzed and compared with
the infotaxis algorithm. We show that the expected rate
algorithm maximizes the inverse of expected entropy, while
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the infotaxis algorithm minimizes the expected change of
entropy. We also show that in many situations the two algo-
rithms produce the same optimization steps. Our simulation
results also show that in certain situations the expected rate
algorithm produces more aggressive optimization steps than
the infotaxis algorithm. To our knowledge, these findings
have not been documented in the literature. This paper also
contains experimental results of the expected rate algorithm
implemented on a Khepera robot to localize a light source.

II. PROBLEM FORMULATION

Suppose a robot is trying to localize a source of turbulent
plume field in a 2D space. The space is discretized into
uniform grids. Let each grid point be denoted by hi; i =
1, 2, ..., N where N is the total number of grid points. The
plume source has an unknown location represented by a
random variable Y. Let the robot’s location be represented
by the parameter θ and the measurement taken by the robot
be represented by a random variable Z.

A. Motion dynamics

We consider a simple particle model of the robot:

θk+1 = θk + uk (1)

where θk is the current position of the robot at time t = k,
uk is the control input and θk+1 is the next location.

B. Information dynamics

1) Probability distribution of source location: The ran-
dom variable Y has a probability distribution p(y). At t = k,
given the measurement zk at θk, we can update p(y) using
Bayes theorem as follows:

p(y|z1:k, θ1:k) =
p(y|z1:k−1, θ1:k)p(zk|y, z1:k−1, θ1:k)

p(zk|z1:k−1, θ1:k)
(2)

Assumption 2.1: Current measurement is dependent on
the current location of the robot and the source location only.

p(zk|y, z1:k−1, θ1:k) = p(zk|y, θk) (3)
Assumption 2.2: The probability distribution of the source

location is independent of future robot location until the
measurement is observed i.e.

p(y|z1:k−1, θ1:k) = p(y|z1:k−1, θ1:k−1) (4)
Now using (2), (3) and (4) we have:

p(y|z1:k, θ1:k) =
p(y|z1:k−1, θ1:k−1)p(zk|y, θk)

p(zk|z1:k−1, θ1:k)
(5)

Here p(y|z1:k, θ1:k) is posterior, p(y|z1:k−1, θ1:k−1) is prior,
p(zk|y, θk) is likelihood and p(zk|z1:k−1, θ1:k) is normalizer.
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C. Measurement model

1) Hits: In a turbulent field, the true magnitude of the
field far away from the source can either be zero or less
than the threshold of the sensor. In both the cases, the robot
does not detect the field. However, at some locations, the
value of the field is above the sensor threshold and thus a
detection is made by the sensor. These detections will be
called hits in this paper and the number of hits observed by
the robot is the measurement collected by it.

2) Rate of hits: The rate of hits is defined as the number
of hits per unit time encountered by a sensor. Rate of hits
is a function of the source location and the sensor (robot)
location and since the source location is unknown therefore
rate of hits R(y, θ) is also a random variable. A deterministic
function of rate of hits for the case of plume particles
in turbulent field can be derived using Advection-diffusion
equation as was presented by Vergasolla et al. in [11].

3) Posterior distribution of source location: Given likeli-
hood and nomalizer we can compute the posterior from (5).

Assumption 2.3: The number of hits received by a robot
at any grid point is Poisson distributed and is independent
of the number of hits received by it at any other grid point,
given the source location.

Suppose the robot, searching a plume source stops at
every visited location for time ∆t to receive measurements.
Using assumption 2.3, given the robot and source locations,
probability of number of hits to be Hk can be calculated as:

p(zk = Hk|y, θk) =
exp(−R(y, θk)∆t)(R(y, θk)∆t)Hk

Hk!
(6)

where R(y, θk)∆t is the Poisson rate parameter.
Similarly, the normalizer can be computed by marginal-
izing out random variable Y from the distribution
p(zk, y|z1:k−1, θ1:k).

p(zk|z1:k−1, θ1:k) =

∫
p(zk, y|z1:k−1, θ1:k)dy (7)

Using (5), (6) and (7) we can calculate the posterior proba-
bility distribution of source location as follows:

p+k (y) = p(y|z1:k, θ1:k) (8)

=
p(y|z1:k−1, θ1:k−1) exp(−R(y, θk)∆t)R(y, θk)Hk∫
p(y|z1:k−1, θ1:k−1) exp(−R(y, θk)∆t)R(y, θk)Hkdy

4) A priori distribution of the source location: At t = k,
the a priori distribution of the source location p−k+1(y) is an
estimate of the probability distribution of source location if
the search robot moves to (θk +uk) and might receive ẑk+1

measurement after waiting for ∆t time at that location. If,
p+k (y) is the posterior distribution of source location then
using (8) the a priori distribution can be given as:

p−k+1(y) = p(y|ẑk+1, z1:k, θk + uk, θ1:k) (9)

=
p+k (y) exp(−R(y, θk + uk)∆t)R(y, θk + uk)ẑk+1∫
p+k (y) exp(−R(y, θk + uk)∆t)R(y, θk + uk)ẑk+1dy

Algorithm 1: Template

1 Initialize search space with uniform probability
distribution of source location.

2 Initialize iteration k = 1.
3 while Hk < Hs do
4 Let the posterior probability distribution be

p+k (y) = p(y|z1:k, θ1:k)
5 Compute the a priori probability distribution

p−k+1(y) using (9) ∀z
6 Estimate the control input uk using the following:

arg max
uk

Ck(θk, uk, p
+
k (y), p−k+1(y))

such that uk = γak; ak ∈ D = {0̂,±x̂,±ŷ}

7 Move to the location θk+1 using (1) and receive
Hk+1 hits after waiting for time ∆t.

8 Compute posterior distribution p+k+1(y) using (8)
9 k = k + 1

10 end

5) Probability distribution of measurement: At time t =
k, the distribution p(ẑk+1|θk+uk) represents the probability
of getting a measurement of ẑk+1 at a next possible location
(θk + uk) if the robot stays at that location for time ∆t.
We estimate this distribution by using assumption 2.3. If
R

+

k (θk + uk) =
∫
p+k (y)R(y, θk + uk)dy is the expectation

of rate of hits at location (θk + uk) then the parameter of
the Poisson process Λ can be estimated by the product of
R

+

k (θk + uk) and the stopping time ∆t. For θ = θk + uk:

p(ẑk+1|θ) =
exp(−R+

k (θ)∆t)(R
+

k (θ))ẑk+1

ẑk+1!
(10)

D. Source seeking

Let the plume source be located at S in the search space
and δ ∈ R+ be a small positive scalar such that the ball
B(S, δ) is a neighborhood of the source. Let at t = k, the
robot’s position be θk and γ = grid-edge be the constant step
size of robot. Let the posterior distribution of source location
be p+k (y) = p(y|z1:k, θ1:k) and the a priori distribution be
p−k+1(y) = p(y|ẑk+1, z1:k, θk+uk, θ1:k). Let 0̂ be a vector of
zero magnitude and x̂, ŷ be unit vectors pointing in positive
X and positive Y axes respectively. Let Hs be the upper
bound on the number of hits received by a robot in time ∆t.
Given the above mentioned framework the next location of
the robot can be computed by maximizing a cost function
Ck(θk, uk, p

+
k (y), p−k+1(y)). The general framework for the

source seeking algorithm can be given as algorithm 1.
It should be noted that we are restricting the movement

of the robot along the edges of the grids of the discretized
space. A source seeking algorithm generates a sequence of a
control input uk such that θk converges to the neighborhood
of source location B(S, δ) as time goes to infinity i.e.

lim
k→∞

θk ∈ B(S, δ) (11)
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Next, we discuss two types of source seeking algorithms
under the framework of Algorithm 1. They differ by the cost
function Ck. For convenience we assume γ = 1.

III. INFOTAXIS AND EXPECTED RATE ALGORITHMS

For the sake of simplicity, we define two expectation
operators as follows:

E1[f(.)] =

∫
p(ẑk+1|θk + uk)f(.)dz (12)

E2[f(.)] =

∫
p−k+1(y)f(.)dy (13)

A. Infotaxis Algorithm

1) Information Entropy: The entropy of a probability
distribution pk(y), can be given as the expectation of
(− log pk(y)) with respect to pk(y). Hence, the entropy of
the posterior distribution can be given as:

S
+

k = −
∫
p+k (y) log p+k (y)dy = EY [− log p+k (y)] (14)

2) Predicted entropy: Predicted entropy can be defined
as the expected value of (− log p−k+1(y)) with respect to the
distribution p(y, ẑk+1|z1:k, θk + uk, θ1:k).

S
−
k+1(uk, θk) = E1

[
E2[− log p−k+1(y)]

]
(15)

3) Predicted change in entropy: Predicted change in the
entropy at a new possible location of the robot (θ = θk+uk)
can be defined as:

∆Ŝk(θ) = p+k (θ)(−S+

k ) +
(
1− p+k (θ)

)
∆Snorm (16)

+
(
1− p+k (θ)

)(
S
−
k+1(θk, uk)−

∑
n

p(ẑk+1 = n|θ)S+

k

)
where ∆Snorm is the normalizer of the probability distribu-
tion when p+k (θ) = 0 and can be given as:

∆Snorm = −
∑
hu 6=θ

p+k (hu)

1− p+k (θ)
log

p+k (hu)

1− p+k (θ)
− S+

k (17)

4) Algorithm: The infotaxis algorithm can be obtained by
using negative of predicted change in entropy as cost function
in algorithm 1 i.e. Ck = −∆Ŝk(uk + θk).
The first term of the cost function is an exploitation term
and corresponds to the case when the source is found at
(θk + uk). This is based on a strong assumption that the
robot can recognize the source if it is close to it.
The second and third terms are exploration terms which
correspond to the case when the source is not found at (θk+
uk). The term ∆Snorm accounts for the fact that since source
is not found at (θk+uk), the probability distribution needs to
be normalized and the term (S

−
k+1(θk, uk) −

∑
n p(ẑk+1 =

n|θk+uk)S
+

k ) accounts for the change in entropy introduced
by the fact that the robot might receive some hits at (θk+uk).

Remark 3.1: Estimation of ∆Ŝk(θk + uk) involves esti-
mation of three terms (equation (16)) which requires more
computation compared to the expected rate algorithm.

B. Expected rate algorithm

1) Predicted rate of hits: The predicted rate of hits
R
−
k+1(θk, uk) at a next possible robot location (θk + uk)

can be defined as the expected value of R(y, θk + uk) with
respect to the probability distribution p(y|θk + uk).

R
−
k+1(θk, uk) = E1

[
E2[R(y, θk + uk)] (18)

2) Algorithm: The expected rate algorithm can be ob-
tained by using predicted rate of hits as cost function in
algorithm 1 i.e. Ck = R

−
k+1(θk, uk).

Expected rate algorithm does not assume a measurement
model which can recognize the source if the robot is close
to it. We can show that estimation of cost function requires
less computation when compared to infotaxis algorithm.
Let the total number of grid points be N = l× l and p+k (y)
be stored in a l× l matrix P . Let m be the total number of
next possible steps in each iteration. The following are the
additional computation, compared to expected rate algorithm,
performed by the infotaxis algorithm for each iteration:
• Computation of Sk which requires taking log, multipli-

cation and addition ∀Pi,j
• Dividing (l2 − 1) elements by (1 − p+k (θk)), then

taking their log, performing multiplication followed by
addition to compute ∆Snorm.

• Taking log ∀Pi,j a total of 3mHs times to estimate
predicted entropy ∀m.

Remark 3.2: Predicted rate of hits is weighted mean of
rv R(y, θ) and since R(y, θ) decreases exponentially with
an increase in distance between source location and robot
location [11], therefore the value of predicted rate of hits
can be found using approximate mean. The approximate
mean can be calculated by ignoring the grid points where
R(y, θ) ≈ 0. Hence the computation required can be reduced
to a much lesser value.

IV. RELATION BETWEEN PREDICTED ENTROPY AND
PREDICTED RATE OF HITS

Lemma 4.1: Under the assumptions 2.1-2.3 and the
framework of the algorithm 1, for some uk = u1k, if
If,

R+
k (θk + u1k)E2

[
1

R(y, θk + u1k)

]
< 1 (19)

then,
R
−
k+1(θk, u

1
k) ∝ 1

f(S
−
k+1(θk, u1k))

(20)

where f(.) is some monotonic function.
Proof: Let θ = (θk + u1k). Predicted entropy at θ is:

S
−
k+1(θk, u

1
k) = E1

[
E2[− log p−k+1(y)]

]
(21)

Using (9) we have

S
−
k+1(θk, u

1
k) =

− E1

[
E2

[
log

p+k (y) exp(−R(y, θ)∆t)R(y, θ)z∫
p+k (y) exp(−R(y, θ)∆t)R(y, θ)zdy

]]
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Now, after distribution of log, let us take the derivative of
the predicted entropy with respect to R(y, θ)

∂S
−
k+1(θk, u

1
k)

∂R(y, θ)
= −E1

[
E2

[
z

R(y, θ)
−∆t

− ∂

∂R(y, θ)
log

∫
exp(−R(y, θ)∆t)R(y, θ)zdy

]]
(22)

Now, using Jensen’s inequality we have:

∂S
−
k+1(θk, u

1
k)

∂R(y, θ)
≤ −E1

[
E2

[
z

R(y, θ)
−∆t

− ∂

∂R(y, θ)

∫
log
(

exp(−R(y, θ)∆t)R(y, θ)zdy
)]]

(23)

= −E1

[
E2

[
z

R(y, θ)
+

∫
∆tdy −∆t−

∫
z

R(y, θ)
dy

]]
Since, E1 and E2 are linear operators and R(y, θ) does not
depend on z therefore switching the positions of expectations
and taking E1 inside the RHS, we have:

= −E2

[
E1[z]

R(y, θ)
+

∫
∆tdy−∆t−

∫
E1[z]

R(y, θ)
dy

]
(24)

Again, taking expectation with respect to E2 we have:

∂S
−
k+1(θk, u

1
k)

∂R(y, θ)
≤ −(N−1)

(
∆t− E1[z]E2

[
1

R(y, θ)

])
From (10) we know that ∆tR

+

k (θ) is the Poisson rate param-
eter for the measurement probability i.e. E1[z] = ∆tR

+

k (θ).
Using this we have:

∂S
−
k+1(θk, u

1
k)

∂R(y, θ)
≤ −(N − 1)∆t

(
1−R+

k (θ)E2

[
1

R(y, θ)

])
(25)

We know that stopping time ∆t > 0, thus for N > 1, Since
R

+

k (θ)E2

[
1

R(y,θ)

]
< 1, therefore we have:

∂S
−
k+1(θk, u

1
k)

∂R(y, θ)
< 0 (26)

Also,

∂R
−
k+1(θk, u

1
k)

∂R(y, θ)
=

∂E1

[
E2

[
R(y, θ)

]]
∂R(y, θ)

= 1 > 0 (27)

Both predicted entropy S
−
k+1(θk, uk) and predicted rate of

hits R
−
k+1(θk, uk) are implicitly dependent on θ only through

R(y, θ) therefore we have:

dS
−
k+1(θk, u

1
k)

dθ
=
∂S
−
k+1(θk, uk)

∂R(y, θ)

dR(y, θ)

dθ
(28)

dR
−
k+1(θk, u

1
k)

dθ
=
∂R
−
k+1(θk, uk)

∂R(y, θ)

dR(y, θ)

dθ
(29)

using (26), (27), (28) and (29) we can say that:

R
−
k+1(θk, u

1
k) ∝ 1

f(S
−
k+1(θk, u1k))

(30)

Remark 4.1: Lemma 4.1 implies that if we change the
cost function in algorithm 1 from predicted rate of hits
to inverse of the predicted entropy then the control inputs
generated by the expected rate algorithm should be identical
under the conditions given by the lemma.

Corollary 1.1: Under the framework of algorithm 1, given
a monotonic function f(.), for some uk = u1k

If, E2[R(y, θk + u1k)] > R
+

k (θk + u1k)

then, R
−
k+1(θk, u

1
k) ∝ 1

f(S
−
k+1(θk, u1k))

(31)

Proof: Let us assume that:

R
+

k (θk + u1k)E2

[
1

R(y, θk + u1k)

]
< 1 (32)

Let for simplicity θ = (θk + u!k) then from (32) we have:

1

R
+

k (θ)
> E2

[
1

R(y, θ)

]
(33)

Taking log of both sides and using Jensen’s inequality we
have:

log
1

R
+

k (θ)
> E2

[
log

1

R(y, θ)

]
(34)

Using the linearity of the expectation operator and Jensen’s
inequality we have:

logE2[R(y, θ)] > logR
+

k (θ) (35)

Thus, we have,

E2[R(y, θ)] > R
+

k (θ) (36)

Hence, using (32), (36) and lemma 4.1 we can say that (31)
is satisfied.

Corollary 1.2: Under the framework of algorithm 1 and
at t = k, if there exist a ujk such that E2[R(y, θk + ujk)] >

R
+

k (θk + ujk), then for any pair of next possible step of the
robot hj = θk + ujk and hm = θk + umk , if R

−
k+1(θk, u

j
k) >

R
−
k+1(θk, u

m
k ) then S

−
k+1(θk, u

j
k) < S

−
k+1(θk, u

m
k ).

Proof: Let at the current location θk, R
−
k+1(θk, 0) =

R and S
−
k+1(θk, 0) = S. Let for simplicity of notation

R
−
k+1(θk, u

i
k) = R

−
k+1(hi) and S

−
k+1(θk, u

i
k) = S

−
k+1(hi)

for i = j,m.
Given E2[R(y, θk+ujk)] > R

+

k (θk+ujk), from lemma 4.1
and corollary 1.1, we can deduce that for the next possible
location hj we have S

−
k+1(hj) < S. Now, the other option

of next possible location hm corresponds to one of the
following three cases:

Case 1: R
+

k (θk + umk )E2[1/R(y, hm)] > 1 (37)

Case 2: R
+

k (θk + umk )E2[1/R(y, hm)] ≤ 1 (38)
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From (25) we can see that for Case 1, the gradient of
S
−
k+1(hm) > 0. This means S

−
k+1(hm) > S or S

−
k+1(hj) <

S
−
k+1(hm). Again from (25) we can see that for Case 2,

the gradient of S
−
k+1(hm) ≤ 0 but using (28) and (29)

we can say that since R
−
k+1(hj) > R

−
k+1(hm) therefore

S
−
k+1(hj) has steeper gradient than S

−
k+1(hm). Hence we

have S
−
k+1(hj) < S

−
k+1(hm).

Remark 4.2: Corollary 1.2 implies that if there exist one
control input for which the average rate of hits increases then
the control input which corresponds to the maximal increase
in the predicted rate of hits also corresponds to the maximal
decrease in the predicted entropy.

V. PERFORMANCE OF THE ALGORITHMS

Under the framework of algorithm 1, let at t = k,
hj = θk + ujk and hm = θk + umk be two of the choices
for next location using the infotaxis algorithm and ∆2Sk
be the difference of the predicted change in the entropy for
hj and hm. Let for simplicity of notation R

−
k+1(θk, u

i
k) =

R
−
k+1(hi), S

−
k+1(θk, u

i
k) = S

−
k+1(hi) and p(ẑk+1 = n|hi) =

ρn,i for i = j,m. Now, using (15), (16), (17) and after some
grouping of the terms we obtain:

∆2Sk = ∆Ŝk(hm)−∆Ŝk(hj) = A+B + C ;

A = Sk(p+k (hm)− p+k (hj)) (39)

B = log
p+k (hm)p

+
k (hm)(1− p+k (hm))(1−p

+
k (hm))

p+k (hj)p
+
k (hj)(1− p+k (hj))(1−p

+
k (hj))

C = (1− p+k (hm))S
−
k+1(hm)− (1− p+k (hj))S

−
k+1(hj)

ρn,m is the probability of getting n hits at location hm
therefore

∑
n ρn,m = 1. For source seeking in turbulent

environment, number of hits are limited to a small number.
Assumption 5.1: Number of hits received by the robot

at a location in time ∆t is bounded by Hs such that∑Hs

n=1 ρn,m =
∑Hs

n=1 ρn,j = 1.
Theorem 5.1: Using framework of algorithm 1, lets con-

sider a robot using infotaxis for source seeking. Let at t = k,
hj and hm be two of the next possible steps of the robot
such that for p+k (hj) < 1/2 & p+k (hm) < 1/2, p+k (hj) =

p+k (hm) + a; a > 0. Given E2[R(y, hj)] > R
+

k (hj), if
R
−
k+1(hj) > R

−
k+1(hm) then the robot will move to hj .

Proof: Using (39) we have:

∆2Sk = A+B + C; such that A = aSk > 0;

Function g(x) = xx(1−x)(1−x) is a monotonically decreas-
ing function for 0 ≤ x ≤ 0.5. Since p+k (hj), p

+
k (hm) < 0.5

and p+k (hm) > p+k (hj) therefore using (39) we have B > 0.
Now, again using (39):

C = (1− p+k (hm))S
−
k+1(hm)− (1− p+k (hm)− a)S

−
k+1(hj)

(40)
Using corollary 1.2 we have if R

−
k+1(hj) > R

−
k+1(hm)

then S
−
k+1(hm) > S

−
k+1(hj). Using (40), we can see that

co-efficient of S
−
k+1(hm) is greater than co-efficient of

S
−
k+1(hj) and since S

−
k+1(hm) > S

−
k+1(hj) therefore we

obtain C > 0. Since A,B,C > 0 therefore using (39) we
can say have ∆Ŝk(hm)−∆Ŝk(hj) > 0. Now, since infotaxis
minimizes the predicted change in entropy therefore using
infotaxis algorithm, robot will move to hj .

Theorem 5.2: Using framework of algorithm 1, lets con-
sider a robot using infotaxis for source seeking. Suppose at
t = k, hj and hm be two of the next possible moves of the
robot such that p+k (hm) ≈ p+k (hj). Given E2[R(y, hj)] >

R
+

k (hj), if robot moves to hj then R
−
k+1(hj) > R

−
k+1(hm).

Proof: Since, p+k (hm) ≈ p+k (hj) therefore we can say
p+k (hm) = p+k (hj)± ε; ε� 1. Using (39) we have:

A = ±εSk; B = 0; C = (1−p+k (hj))[S
−
k+1(hm)−S−k+1(hj)]

such that

∆2Sk = ±εSk+(1−p+k (hj))[S
−
k+1(hm)−S−k+1(hj)] (41)

If the robot moves to hj using infotaxis algorithm, then
∆Ŝk(hm) > ∆Ŝk(hj)⇒ ∆2Sk > 0. Using (41) we obtain:

∆2Sk = ±εSk+(1−p+k (hj))[S
−
k+1(hm)−S−k+1(hj)] > 0

Since ε� 1, therefore, for the above equation to be true we
should have S

−
k+1(hj) < S

−
k+1(hm). Thus, using corollary

1.2 we have R
−
k+1(hj) > R

−
k+1(hm).

Remark 5.1: We haven’t considered 2 cases in the above
comparison of the algorithms, the first case is when
p+k (hj) = p+k (hm) +a such that one of p+k (hj) and p+k (hm)
is greater than 0.5. This case is non-significant because
speaking heuristically the value of p+k (hi); ∀i is well below
0.5 even after the algorithm converges to the source location.
The second case is when p+k (hj) > p+k (hm) such that
R
−
k+1(hj) < R

−
k+1(hm). To evaluate the performance of the

two algorithms under this condition we perform simulation.

VI. SIMULATIONS AND EXPERIMENTAL RESULTS

A. Simulation results

A number of simulation trials were performed to compare
the expected rate and infotaxis algorithms. In each simulation
a spherical robot of radius 0.1m was deployed to localize a
source of plume in a 2D search space where wind is blowing
in the negative y-axis direction at velocity, V = 1m/s. The
plume source emits plume particles at rate Rs = 1 such that
the plume particles have a life time of 2500 seconds and
have a diffusivity of D = 1 . The robot stops at every grid
point in its path for ∆t = 5sec. In each figure the source
is denoted by a red asterisk (at top) whereas the the robot’s
starting location is denoted by a green asterisk (at bottom).
Fig. 1 shows a comparison of path followed by the robot
when using expected rate and infotaxis algorithms. While
comparing the path for different grid sizes, it was found that
when the grid size is small as compared to the robot size
both the algorithms take comparable number of steps needed
to localize the source. But, as the size of grid increases,
the expected rate algorithm performs consistently better than
infotaxis algorithm.
To verify this, simulations were performed for various grid
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(a) Expected rate Algorithm (b) Infotaxis algorithm

Fig. 1: Comparison for grid size 0.1m

sizes starting from 0.01m to 0.15m. Fig. 2b shows a plot
of comparison of normalized number of steps for various
step sizes. The number of steps taken by the robot for
each algorithm is normalized with the minimum distance (in
number of steps) between the source and initial position of
the robot. We can see in the Fig. 2b that for grid size greater
that 0.09m, expected rate algorithm consistently takes less
number of steps than infotaxis algorithm.

Remark 6.1: A possible explanation for expected rate
algorithm performing better than infotaxis algorithm, in case
of large step size, can be their difference in the choice of
next step when p+k (hj) > p+k (hm), R̂(hj) < R̂(hm) and
∆Ŝ(hj) < ∆Ŝ(hm) for the next two possible steps hj and
hm. Using simulation results, we can say that, it is better to
choose the step which maximizes predicted rate of hits rather
than the step which minimizes predicted change in entropy.

Fig. 2a shows a comparison of the time taken by one
iteration of each algorithm for a given total number of grids.
We can see that as the number of grids increase the difference
between the time taken by each iteration becomes larger with
infotaxis taking more time than expected rate algorithm.

B. Experimental results

A light source was used to represent a plume source and
the intensity of the light was used to represent the rate of
hits of plume particles encountered by a search robot.
We used a 60W bulb as light source and a Khepera robot
which sensed ambient light intensity to calculate the number
of hits. A lab space of 232cm×175cm was used as the search
space and the light source was placed at the right-center
position. The search space was discretized into uniform grids
and the robot was initialized at a position far from the
source. Shaft encoders of the Khepera robot were used for
localization of the robot. Fig. 3 shows the the snap shots
of the Khepera successfully localizing the light source using
the expected rate algorithm.

VII. CONCLUSION AND FUTURE WORK

We presented a novel framework of algorithms for source
seeking and demonstrated that infotaxis algorithm fall under
the framework. We introduced an algorithm based on the
same framework which requires less amount of computation
and produces identical control inputs under certain condi-
tions. In future we would like to expand the algorithm to the
case of multi-robot system with limited communication.

(a) Time taken per interation
(b) # of steps (Normalized) taken
for source localization

Fig. 2: Comparison graphs

Fig. 3: Snapshots of the experiment
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